Self-regulation of turbulence bursts and transport barriers
نویسندگان
چکیده
The interplay between turbulent bursts and transport barriers in analyzed with a simplified model of interchange turbulence in the Scrape-Off Layer of magnetically confined plasmas. The turbulent bursts spread into the transport barriers, and, depending on the competing magnitude of the burst and stopping capability of the barrier can burn through. Two models of transport barriers are presented, a hard barrier where all turbulent modes are stable in a prescribed region and a soft barrier with external plasma biasing. This process can be modeled on the basis of competing stochastic processes. For classes of probability density function of these processes one can predict the heavy tail properties of the bursts downstream from the barrier, either exponential for a leaky barrier, or with power laws, for a tight barrier. The intrinsic probing of the transport barriers by the turbulent bursts thus gives access to properties of the transport barriers. The main stochastic variables of the two models addressed here are the barrier width and the spreading distance of the turbulent bursts within the barrier together with their level of correlation. One finds that in the case of a barrier located in the Scrape-Off-Layer, the stochastic model predicts a leaky barrier with an exponential probability density function of escaping turbulent bursts in agreement with the simulation data.
منابع مشابه
Nondiffusive transport in tokamaks: three-dimensional structure of bursts and the role of zonal flows
Large scale transport events are studied in simulations of resistive ballooning turbulence in a tokamak plasma. The spatial structure of the turbulent flux is analyzed, indicating radially elongated structures (streamers) at the low field side which are distorted by magnetic shear at different toroidal positions. The interplay between self-generated zonal flows and transport events is investiga...
متن کاملFluctuation level bursts in a model of internal transport barrier formation
A model of internal transport barriers ~ITB! is developed that, in addition to the typical features of ITB models ~the phase transition character with a power threshold, barrier front propagation, etc.!, exhibits an oscillatory/bursty behavior close to the transition. This behavior comes from the competition between the driving and suppression mechanisms for the turbulence. The onset of the osc...
متن کاملTime-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)
Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...
متن کاملTime-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)
Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...
متن کاملEffect of secondary convective cells on turbulence intensity profiles, flow generation, and transport
This paper reports the results of gyrokinetic simulation studies of ion temperature gradient driven turbulence which investigate the role of non-resonant modes in turbulence spreading, turbulence regulation, and self-generated plasma rotation. Non-resonant modes, which are those without a rational surface within the simulation domain, are identified as nonlinearly driven, radially extended conv...
متن کامل